
Journal of Statistical Physics, Vol. 117, Nos. 5/6, December 2004 (© 2004)

Phase Transitions in Traffic Models
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It is suggested that the question of existence of a jamming phase transition in
a broad class of single-lane cellular-automaton traffic models may be studied
using a correspondence to the asymmetric chipping model. In models where
such correspondence is applicable, jamming phase transition does not take
place. Rather, the system exhibits a smooth crossover between free-flow and
jammed states, as the car density is increased.
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Traffic flow and the formation of traffic jams have been extensively
studied for many years.(1) A very useful quantity which has often been
used to characterize traffic flow is the relation between the density of cars
in the road and the traffic throughput. This relation, termed the fundamen-
tal diagram, was measured empirically in various situations, and was stud-
ied in a large variety of models.(1,2) When the density of cars in the system
is low, the traffic flow is expected to grow linearly with the density. At high
densities traffic jams are formed, lowering down the flow sometimes even
to a complete stop.(2,3) This enables one to identify three regimes in the
density-flow plane: a free-flow regime at low densities; a regime of wide
moving jams at high densities; and a synchronized flow regime, where jams
and free-flow coexist, at intermediate densities.(1) The question whether the
transition from one regime to another is a smooth crossover or is a result
of a genuine phase transition is still not settled in most traffic models.(4)

In recent years Probabilistic Cellular Automata (CA) models have
been introduced to analyze traffic flow.(1,5,6) In such models both time and
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space are discrete and the physical state of the system (e.g., position and
velocity of all cars) is updated simultaneously according to some update
scheme. This provides a rather efficient way for carrying out numerical
studies of the fundamental diagram. Some traffic CA models were sug-
gested to exhibit phase transitions.(7–10) However, the existence of such a
transition can only be explicitly demonstrated in some limiting cases where
certain dynamical processes are deterministic. The existence of a jamming
phase transitions in more generic cases, where all dynamical processes are
non-deterministic, is still an open question. Such transitions have been
suggested to occur in some models on the basis of mean-field methods and
numerical simulations, which cannot yield a definitive answer to this ques-
tion. In this Letter we address this issue in more detail.

Within a more general framework, the existence of phase transitions
in one-dimensional driven systems has been studied rather extensively in
recent years and several mechanisms for such transitions have been pro-
posed. Examples include the zero range process,(11,12) two species driven
models(13) and the chipping model.(14–17) The chipping model incorporates
dynamical processes which are closely related to those taking place in traf-
fic dynamics, so one would hope to obtain useful insights for traffic jams
from what is known about the chipping model.

In this paper we examine the correspondence between traffic CA
models and the chipping model more closely. This correspondence suggests
that for a large class of traffic models with non-deterministic dynamics, a
genuine phase transition is not expected. Rather, these models exhibit a
smooth crossover between the free flow and the jammed phases. In the fol-
lowing we briefly review the main known results for the chipping model.
We then introduce a simple CA traffic model for which the correspondence
to the chipping model could be made explicit. Other CA traffic models
which have been introduced and studied in the past are also examined
within this approach.

We start by considering the Chipping Model (CM). The model is defined
on a periodic lattice, where each site can contain any number of particles.
The dynamics is defined through the rates by which two nearest neighbor
sites containing k and m particles, respectively, exchange particles:

(k,m)
1−→(k+m,0), (k,m)

ωL−→(k+1,m−1), (k,m)
ωR−→(k−1,m+1).

(1)

The first is a diffusion (or coalescence) process3 while the last two pro-
cesses correspond to right and left chipping of a particle from one site

3Here only a diffusion to the left is considered. One can also introduce diffusion to the right,
without changing the relevant results.
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to the other. It has been shown in ref. 16 that if the chipping process
is symmetric (ωR = ωL) there is a condensation transition at a critical
density, above which one site becomes macroscopically occupied. Further-
more, numerical simulations and mean-field studies show that the proba-
bility P(k) of finding k particles in a site has the asymptotic form P(k)∼
zk/kτ for large k, with τ =3/2. At the critical point z=1 and τ =5/2. The
parameter z � 1 is determined by the average particles density and serves
as the fugacity. The condensation transition is a result of the fact that
τ > 2, for which the distribution P(k) cannot sustain high densities even
at z = 1. This transition is analogous to the Bose–Einstein condensation.
In contrast, if the chipping is asymmetric there exists no phase transition
at any density.(17) In this case numerical studies indicate that the domain
size distribution has the same form as above, but here τ =2. This distribu-
tion remains valid at any density with z approaching 1 at high densities,
indicating that no condensation transition takes place.

In the following we argue that the chipping model with an asym-
metric chipping process provides a framework within which a large class
of traffic models can be characterized. Starting from a particular traffic
model we first identify the domains which characterize the flow. A domain
can either be a low density segment, termed a gap or a hole in some stud-
ies ; a high density segment, termed a jam ; or a segment of some other
characteristics, defined ad-hoc. A domain of size k is then associated with
a site of the CM occupied by k particles. One then proceeds by examining
the evolution of the domains, and identifying their dynamical processes.
As will be demonstrated, in many cases these processes are closely related
to the diffusion and the chipping processes of the asymmetric CM.

We now consider a particular traffic model for which the correspon-
dence to the CM can be made rather explicit. The model, referred as
Velocity Dependent Braking (VDB), is a variant of the Nagel–Schrecken-
berg model.(6) It is defined on a periodic lattice of size L with M = ρL
cars. Each car is characterized by a velocity vi(t)= 0 . . . vmax and a posi-
tion xi(t). The dynamics is performed in parallel by first updating the
velocities as

vi(t +1)=
{

min{vi(t)+1,vmax,xi+1(t)−xi(t)−1} with probability 1−p(vi(t)),

0 with probability p(vi(t))

(2a)

and then increasing the position of each car by its speed,

xi(t +1)=xi(t)+vi(t +1) . (2b)
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The braking probability p(v) is defined in terms of the two parameters
of the model, p and q, as

p(v)=
{

p, v <vmax,

q, v =vmax .

(3)

We proceed by first considering the model in the cruise control (CC)
limit, q = 0. In this limit cars residing in dilute regions of the system
move deterministically with the maximal allowed velocity vmax. It is thus
straightforward to define a free-flow domain as a segment which consists
of vacancies and deterministically moving cars. For ρ � ρf = 1/(vmax + 1)

a free-flow steady state exists, where all cars move deterministically and
the current is simply given by J (ρ) = vmax ρ. At higher densities such a
state does not exist, local jams are formed and the current is reduced. A
phase transition between the two regimes thus takes place at some density
ρ0 �ρf . This particular phase transition is a result of the fact that due to
the deterministic processes, the free-flow state is an absorbing state which
has no dynamics. It is thus expected to exist only in the CC limit, and to
turn into a smooth crossover for q >0, where no absorbing state exists.

It is straightforward to analyze the fundamental diagram in the
CC limit (q =0) for the case vmax =1. We find ρf =1/2 and ρ0 = (1−p)/

(2 − p).(18) It can be shown that in the jammed state (ρ > ρ0) the cur-
rent is J (ρ)=ρ0(1−ρ)/(1−ρ0). For ρ0 �ρ �ρf both free-flow states and
jammed states coexist in the thermodynamic limit. In this region a free-
flow state evolves deterministically and jams are never produced. However,
starting from a random initial condition a jammed state is formed, which
slowly evolves towards the free-flow one. However, the time it takes for
a system to reach a free-flow state increases exponentially with the sys-
tem size.(18) Thus in the thermodynamic limit both the free flow and the
jammed phases exist as stable steady states of the system. For q > 0 the
J (ρ) curve can be calculated numerically, and it shows no singularity, as
expected. The fundamental diagram of the model for the case vmax = 1 is
given in Fig. 1a.

As in many traffic models, the general features of the model are
revealed only at vmax > 1. We still expect a genuine phase transition
between the free-flow and jammed states in the CC limit. Again this
transition is expected to turn into a crossover for q > 0 (see Fig. 1b).
The question is whether there is another transition at ρ >ρ0 which is not
associated with the existence of absorbing free-flow states, and which may
persist beyond the CC limit, namely for q >0.

In what follows we consider vmax = 2 in the ρ > ρ0 regime. Here no
exact solution is available. Instead, we analyze the evolution of free-flow
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Fig. 1. Fundamental diagram for the VDB model. Data for q > 0 was obtained from
numerical simulations of systems of size 500. (a) vmax = 1 and p = 1/2. (b) vmax = 2 and p =
0.6 ; here the q =0 free-flow branch is given by 2ρ, while the branch of jammed states in this
case was extrapolated from numerical data.

domains, and examine its correspondence to the dynamical processes
of the chipping model. In Fig. 2 we present space–time configurations
of the model at vmax = 2 and p = 0.1. Focusing on a single domain
(Fig. 2a) we observe that the domain evolves by biased diffusion and chip-
ping processes. In Fig. 2b the evolution of many domains is depicted,
demonstrating exchange of particles between domains and coalescence of
two domains upon contact.

More explicitly, the dynamics of the domains can be linked to the
microscopic processes of the traffic model as follows:
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Fig. 2. Space–time configurations of the VDB model in the CC limit, with p=0.3. Stopped
cars are in black, moving cars in gray, vacancies in white. (a) The evolution of a single
domain is characterized by a biased diffusion and chipping of small domains. Here we ini-
tiate the model with a single free-flow domain, and present every 5th sweep. (b) Chipping
and diffusion may lead to coalescence of neighboring domains. Here we take a random initial
condition, and let the system evolve for 1400 sweeps before presenting configurations every
30 sweeps.

1. Diffusion and Coalescence—Consider a stationary car, located at
the left end of a free-flow domain. This car may accelerate to the max-
imal velocity vmax, reach the right boundary and eventually stop there.
This process corresponds to the diffusion of the whole domain to the left
(Fig. 3a).

2. Chipping—A stationary car at the left end of a domain may accel-
erate, and then brake before reaching the maximal velocity. This process
decreases the size of the domain, and ejects a single vacancy to the left
(Fig. 3b).
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Fig. 3. The vmax = 2 dynamics of a domain, depicting (a) diffusion and (b) chipping pro-
cesses. Stationary cars are marked in black and vacancies in white. The velocity of moving
cars, marked in gray, is indicated.
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Note that chipping occurs only to the left, corresponding to a fully asym-
metric CM, with ωR =0.

To test this picture we performed Monte–Carlo simulations of the
VDB model with q = 0 and vmax = 2, and measured the domain size
distribution. For convenience we define the size of a free-flow domain,
k, as the number of vacancies it contains.4 We find that the asymp-
totic form of P(k) is consistent with k−τ with τ = 2 for a range of
densities ρ > ρ0 and for various values of the parameter p. For exam-
ple, P(k) for the case p = 0.3 and ρ = 0.4 is given in Fig. 4. In view
of the fact that τ = 2, the existence of a macroscopic domain in this
case, as is demonstrated by the peak at large blocks, should be inter-
preted as a finite-size effect, which would disappear in the thermodynamic
limit.(17)

It is interesting to note that unlike the CM, the number of domains
in the traffic model is not conserved, but is subject to fluctuations.
The number of domains is given by M −MD where MD is the number of

101 102 103
10–6

10–5

10–4

10–3

10–2

10–1

100

Block Size

Fig. 4. Domain size distribution of VDB model with vmax = 2, ρ = 0.4, p = 0.3 and q = 0.
Solid line has a slope −2. Simulation was performed on a system of size L = 10,000 and
averaged over 15×107 sweeps.

4This definition is not unique, as one may include the deterministic cars residing in a domain
in the definition of the length, without changing the results. One advantage of the definition
used here is that the overall length of domains is conserved.
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deterministic cars,5 i.e., cars moving at v = vmax. The fluctuations in MD

are expected to scale as
√

L. This was verified by direct numerical studies
of systems of size up to 104. Therefore, these fluctuations are not expected
to influence the dynamics of the system in the thermodynamic limit.

We conclude that in the CC limit of the VDB model there is no phase
transition for ρ > ρ0. It is interesting to examine the implication of this
result on the question of existence of a phase transition beyond the CC
limit, namely for q >0. Here the free-flow phase is no longer an absorbing
state, and thus the transition taking place at ρ0 in the CC limit is expected
to become a smooth crossover. Since no other transition is found at ρ >ρ0
in the CC limit we also expect no such transition for q >0. The reason is
that in addition to the CM dynamics, a model with q > 0 exhibits other
processes, which clearly disfavor condensation of macroscopic domains.
For example, here a domain may split into fractions of comparable size,
leading to fast fragmentation of large domains.

In examining other traffic models, we find that in many cases the
dynamical processes characterizing the CM may still be used to describe
the domain dynamics. However, it may turn out that the chipping process
involves a detachment of more than a single particle. Nevertheless, as long
as the number of chipped particles r is bounded by a finite number, or the
probability of chipping r particles u(r) decays sufficiently fast with r (say
exponentially), the main results obtained from the CM are expected to be
valid. Namely, condensation transition should not take place as long as
the chipping process is asymmetric. To verify this point we studied numer-
ically chipping models for the case u(r)∼ exp(−r) and for the case where
r is distributed uniformly over a finite range. In both cases we found that
the domain size distribution decays as zk/k2 for large k, as expected from
the CM. The VDB model with vmax > 2 corresponds to CM with chip-
ping of more than a single particle. However, in the CC limit the number
of chipped particles is bound by vmax(vmax − 1)/2. Thus the analysis pre-
sented above for vmax =2 remains valid for any finite vmax.

To demonstrate the more general applicability of the CM picture to
traffic models, we briefly consider three other traffic models which have
been studied in the past.

Model for Emergent Traffic Jams(19)—This is another variant of the
Nagel-Schreckenberg traffic model. The model is closely related to the CC
limit of the VDB model defined above, except that the velocity update rule

5Alternatively, one may associate each domain with a stationary car, say, the one to its left.
Within this definition the number of domains is given by the number of stationary cars,
where domains of size zero are counted as well. Such a domain corresponds to two adjacent
stationary cars. For the purpose of the present study each definition can be used.
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(Eq. (2a)) is replaced by

vi(t + 1
2 ) = min

{
vi(t)+1, vmax, xi+1(t)−xi(t)−1

}
,

vi(t +1) =
{

vi(t + 1
2 ) with probability 1−p(vi(t)),

max
{

0, vi(t + 1
2 )−1

}
with probability p(vi(t)).

(4)

Unlike the VDB model, here non-deterministic cars slow down rather then
brake, and thus with vmax = 1 the two models are identical. This model
was shown to exhibit self-organized criticality. Based on general consid-
erations and numerical simulations,(19) it was argued that the size distri-
bution of the domains (termed holes in ref. 19) behaves asymptotically as
k−2. Indeed, in ref. 19 the evolution of domains was described in terms
similar to those of the CM. Note that in this case the chipping size distri-
bution u(r) decays exponentially with r.

Traffic Cellular Automata(20)—This model belongs to a different class
of CA traffic models where no velocity variable is attached to a car. Cars
move to their nearest-neighbor site with a probability that depends on the
configuration of their neighborhood. In(20) the dynamics is defined as

••◦◦ α−→•◦•◦, ◦•◦• β−→◦◦••, ••◦• γ−→•◦••, ◦•◦◦ δ−→◦◦•◦,

(5)

where • denotes a car and ◦ a vacancy. In the symmetric CC case, γ =
δ = 1, the model exhibits a low-density absorbing state at ρ < 1/3 and
a high-density absorbing state at ρ > 2/3. It has been suggested(20) that
for intermediate densities (1/3 <ρ < 2/3) and in some region of the α,β-
plane, the system exhibits a macroscopic jam, suggesting a jamming phase
transition at some density. The correspondence between this case and the
CM is less transparent, and will be addressed in a future publication.(21)

Here we consider the CC limit, δ = 1, with γ < 1, and apply the CM
approach to analyze the jammed phase. In this phase a typical microscopic
configuration is given by an alternating left-to-right sequence of (a) free-
flow regions, composed of vacancies and cars separated from their nearest
neighbor cars by at least two vacancies, (b) finite mixed region of alter-
nating cars and vacancies, and (c) an uninterrupted sequence of cars. In
order to apply the approach described above, it is convenient to define
a domain as a union of adjacent free-flow and mixed regions (a and b
above). By examining the dynamics of such domains one finds that they
indeed exhibit the characteristic processes of the CM.(21) We performed
Monte-Carlo simulations of this model in the CC limit and measured the
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domain size distribution (Fig. 5). We find that the distribution is consis-
tent with k−2, as expected from the CM picture, indicating again that a
phase transition does not take place in the jammed state.

It is interesting to note that if instead of δ = 1 we consider γ = 1,
the role played by cars and vacancies is interchanged. Here one can define
a domain as a stretch of cars, within which deterministic vacancies are
embedded, followed to the left by a mixed region. In this case the distribu-
tion of these domains (or jams) behaves as k−2, and thus no macroscopic
jam is expected.

Traffic Model with Passing(22)—Unlike all models mentioned above,
this model is not a cellular automaton. The model is defined on a contin-
uous ring, and evolves in continuous time. Each car is assigned a-priory a
random velocity with which it moves on the ring. When a car encounters
a slower car it assumes its velocity, thus creating a jam. With some finite
probability the next to leading car in a jam can bypass its predecessor
and recover its original velocity. The direct correspondence with the CM
was already noted in ref 22. Treating the CM within mean-field approxi-
mation, the authors concluded that the model should exhibit macroscopic
jam. However, numerical simulations show that the jam size distributions
is again k−2.(22) Our approach suggests that the observed distribution is
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Fig. 5. Domain size distribution of TCA model with ρ = 0.4, α = 0.2, β = 0.6, γ = 0.8 and
δ = 1. Solid line has a slope −2. Simulation was performed on a system of size L = 10,000
and averaged over 60×106 sweeps.
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related to the asymmetric nature of the chipping, a feature which cannot
be captured in mean-field.

In summary, it is suggested that in many traffic models the coarse-
grained dynamics of domains (of either high or low density) in some
deterministic limit, may be described by the two basic processes of the
chipping-model, namely diffusion and chipping. Analysis of several traffic
models within this approach indicates that as in the asymmetric CM, the
traffic models do not exhibit a jamming transition beyond perhaps the one
related to the existence of an absorbing state. It is concluded that in non-
deterministic traffic models jamming phase transitions do not take place.
Rather, a smooth crossover between a free-flow and a jammed state takes
place as the car density is increased. The approach outlined in this paper
could provide a useful tool for analyzing the behavior of traffic models.
In studying a specific model one first has to establish (using numerical or
other methods) that indeed the coarse-grained dynamics of the domains
does follow the basic processes of the chipping model. Only then one can
apply the correspondence between the two. It would be of interest to test
the applicability of this approach to broader classes of traffic models.
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